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Differential binary trees store data embedded in the flow of the tree. This results in low data 
redundancy and fast execution of indexed operations, bridging the gap between arrays and binary 
trees. 
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1. Classical binary trees
Consider the binary tree of figure 1 (below). 

Figure 1. A binary tree with absolute key values 

This is a common data structure. Still, if we look carefully at the tree, the following seems odd: 

the key values are isolated, they are not part of the flow of the tree

This suggests that representation of data keys in the tree: 

• forgets to use the fact that the tree is ordered
• is through repetition partly redundant
• is unnatural and therefore inefficient for certain algorithms that operate on the tree. 

With unnatural I mean that something is wrong (wringing), namely: 

• to reach a data key, we proceed along a path in the tree, we gradually reach the point where the it 
is, but
• if we reach that point, the data key itself is suddenly there, its value did not also grow along the 
path.

If the key values were weights in a natural tree, it would fall to the right.

We will look at the consequences more closely in the rest of this thesis.



2. Differential binary trees 
So, let’s have a look at a tree where the keys themselves do grow along the path that we follow to 
find them. Such a tree is given in figure 2 (below). It represents the same data as the classical binary
tree of figure 1 (above).

Figure 2. A binary tree with differential key values embedded in the flow of the tree 

The tree of figure 2 (above) stores keys as follows:

• the root node stores its own key value
• each successive node stores the difference between its own key and its parent’s key. 

So, for example node 4 stores 4 - 8 = -4 and node 5 stores 5 - 4 = 5 - (8 - 4) = +1. Therefore we will 
call the tree a differential tree. 

The following is true for differential binary trees: 

• the sum of all stored node key differences (diffs) along the path to a node, produces the node’s key
• the left child node of any node has a negative node diff.
• the right child node of any node has a positive node diff
• the absolute value of node diffs tends to decrease with the depth of the node.

The latter observation is interesting. Each subtree cuts the number of remaining nodes into half. In 
the special case that the tree is balanced and completely filled, each subtree level decreases the 
number of bits required for key diff representation with exactly one. See figure 3 and 4 (below). 

Note that there are twice as much nodes that require n bits as there are nodes that require n + 1 bits !



Figure 3. An ideally filled and balanced binary tree with absolute key values

Figure 4. An ideally filled and balanced binary tree with differential key values



We could say that the data ‘compression’ of the differential binary tree is at its best when the tree is 
ideally filled and balanced. However, from the perspective of the differential binary tree, there is no 
data compression at all, just data redundancy in the classical binary tree. And that data redundancy 
is at its peak when the tree is ideally filled and balanced. 

The data efficiency of the differential binary tree depends, quite naturally, on the sparseness of its 
data keys.

Note that, if we put the differential tree of figure 4 upside-down, it resembles a real tree, with the 
absolute value of the node values indicating the thickness of its branches. Therefore, I call the 
differential tree more natural than the classical binary tree with absolute key values.



3. Classical arrays
Before continuing with our analysis of the differential binary tree, we will have a closer look at the 
classical array, implemented as a consecutive block of data in memory (figure 5 and 6) or as a 
consecutive block of pointers to data in memory (figure 7).

Figure 5. An unordered array, implemented as a consecutive block of data in memory

Figure 6. An ordered array, implemented as a consecutive block of data in memory

Figure 7. An ordered array, implemented as a consecutive block of pointers to data in memory

In an array, data is indexed. This means that

• programming is easy
• there is no need for a key inherent to the data (in other words, the index is neutral to and separate 
from the array’s data)
• the array is a natural choice if the problem is to store an indexed list of data.



unordered array of 
consecutive data

ordered array of 
consecutive data

ordered array of 
consecutive pointers to 
data

indexed access 1 1 1

find N 2log(N) 2log(N)

indexed append 1 (plus realloc delay) 1 (plus realloc delay) 1 (plus realloc delay)

indexed insert N (plus realloc delay) N (plus realloc delay) N (plus realloc delay)

indexed delete N N N

iteration over array N N N

delete all 1 1 N

individual array 
elements can be 
referenced

no (physical pointers 
are not persistent)

no (physical pointers 
are not persistent)

yes (physical pointers 
are persistent)

can have variable-size 
elements

no no yes

data overhead per 
element

none none pointer-size bytes

array can be sparse no no will still cost pointer-
size bytes per element 
for each nil pointer

Table 1.  Properties and approximate order of needed time for operations in arrays, where N is the 
number of elements in the array.

Table 1 (above) lists the relative performance of arrays for basic operations. We can improve the 
key-find time from order N to order 2log(N) using binary search in an ordered array. Still, the 
general conclusion for classical arrays can only be that they are:

• fast and compact for static data
° slow for dynamic data, unless the number of elements N is quite small.



4. Binary trees compared
Table 2 (below) lists the properties and performance of operations in classical binary trees, 
compared to differential binary trees, assuming that both are implemented as a near-balanced tree, 
for example as AVL tree or as red-black tree.

classical binary tree, 
implemented as AVL or red-
black tree

differential binary tree, 
implemented as AVL or red-
black tree

access 2log(N) 2log(N)

indexed access 2log(N) 2log(N)

find 2log(N) 2log(N)

append 2log(N) 2log(N)

indexed append 2log(N) 2log(N)

insert 2log(N) 2log(N)

indexed insert N 2log(N)

delete 2log(N) 2log(N)

indexed delete N 2log(N)

key shift N 2log(N)

iteration over tree N N

delete all N N

individual tree elements can be 
referenced

yes (physical pointers are 
persistent)

yes (physical pointers are 
persistent)

can have variable-size elements yes yes

data overhead per element 2 * pointer-size bytes plus 1 or 
2 balancing bits

2 * pointer-size bytes plus 1 or 
2 balancing bits

tree can be sparse yes yes

Table 2. Properties and approximate order of needed time for operations in binary trees, where N is 
the number of elements in the array.

The indexed operations mimic the same operations in an array. This is important if we want to 
implement an array using a tree. I recall the bad performance of classical arrays, outlined in the 
chapter above.

So, for example, if we insert an element in an array at index 8, we first have to move all data at 
position 8 and above, one position up. Doing the same in a tree that implements an array (with 
index numbers as keys), we have to add one to all index keys from 8 upwards.

This very index key shift is a slow (order N) operation in a classical binary tree, but a fast (order 
2log(N)) operation in a differential binary tree ! Right here we see the advantage of storing keys 
differentially, that is, integrated into the natural flow of the tree.



5. Bridging arrays and trees
From the above, it may be clear that the differential binary tree bridges the gap between arrays and 
binary trees, by making index key shift a cheap operation.

In fact, the classical array can be looked at as a differential data structure with an implicit index key 
difference of one, based on the fact that the data structure is non-sparse. I recall the resemblance 
with figure 4 (above).

Using differential binary trees, we can implement dynamic arrays so that

• all indexed operations are guaranteed of order 2log(N)
• iteration is of order N
• the array can be sparse.

Note that iteration is a more efficient operation than indexed access in a loop. 

Table 3 summarizes the properties of array implementations we have discussed.

unordered 
array of 
consecutive 
data

ordered attay 
of consecutive 
data

ordered array 
of consecutive 
pointers to data

array 
implemented 
with classical 
AVL or red-
black tree

array 
implemented 
with 
differential 
AVL or red-
black tree

indexed access 1 1 1 2log(N) 2log(N)

find N 2log(N) 2log(N) 2log(N) 2log(N)

indexed 
append

1 (plus realloc 
delay)

1 (plus realloc 
delay)

1 (plus realloc 
delay)

2log(N) 2log(N)

indexed insert N (plus realloc 
delay)

N (plus realloc 
delay)

N (plus realloc 
delay)

N 2log(N)

indexed delete N N N N 2log(N)

iteration over 
array

N N N N N

delete all 1 1 N N N

individual 
array elements 
can be 
referenced

no  (physical 
pointers are not
persistent)

no  (physical 
pointers are not
persistent)

yes yes yes

can have 
variable-size 
elements

no no yes yes yes

data overhead 
per element

none none pointer-size 
bytes

2 * pointer-size
bytes plus 1 or 
2 balancing 
bits

2 * pointer-size
bytes plus 1 or 
2 balancing 
bits

array can be no no will still cost yes yes



sparse pointer-size 
bytes per 
element for 
each nil pointer

Table 3. Properties and approximate order of needed time for operations in array implementations, 
where N is the number of elements in the array.



6. Algorithms
A detailed discussion of all aspects of the implementation of differential binary trees extends the 
scope of this publication. Let me just issue a few remarks.

• while searching for a key, we change the key to look for in a subtree, e.g. if we look for key 5 in 
the tree of figure 1 and 2 (above), we subsequently look for keys -3 and +1 in a subtree; we stop 
when we have found a difference of 0 or a leaf node.

• operations like insertion, deletion and AVL-rotation require diff-key adaption of nodes involved

• the several different iteration algorithms (forward, backward, from, until, deleting, threaded) are 
worth studying.


